
WIP: When RDMA Meets Wireless

Tong Li†‡, Ke Xu§¶‖, Hanlin Huang§, Xinle Du§, Kai Zheng†

Huawei†, Renmin University of China‡, Tsinghua University§, BNRist¶, PCL‖

Email: tong.li@ruc.edu.cn, xuke@tsinghua.edu.cn, (hhl21, dxl18)@mails.tsinghua.edu.cn, kai.zheng@huawei.com

Abstract—The emerging applications including AR/VR inter-
active gaming, ultra-high-definition live streaming, 4K wireless
projection, Metaverse, etc. imply the demand for ultra-low
latency and ultra-high bandwidth wireless transmission. The
legacy kernel TCP stack is not fully satisfactory because it
induces the CPU bottleneck on hosts. In this paper, we propose
Wireless-RDMA (W-RDMA) that enables RDMA in wireless
networks to tackle the CPU bottleneck issue on wireless hosts.
The feasibility of W-RDMA is demonstrated through testbed
experiments. Technical challenges and future opportunities are
further discussed. We believe it is a small but crucial step for
enabling RDMA for wireless transmission.

Index Terms—RDMA, wireless network, CPU offloading, high
bandwidth

I. INTRODUCTION

In recent years, the popularity of video-based interactive

applications, such as AR/VR interactive gaming, Ultra-High

Definition (UHD) live streaming, 4K wireless projection, and

even Metaverse, has grown by leaps and bounds with the

ubiquity of high-resolution mobile terminals [1]. Despite the

emerging applications, TCP/IP is still the dominant trans-

port/network stack in modern networks. However, the legacy

kernel TCP stack is not fully satisfactory as discussed below.

CPU bottleneck restricts performance of high-bandwidth

technologies. With the development of new communication

technologies such as 5G, WiFi 6, and WiFi 7, the wireless

transmission capability of wireless hosts has been greatly

enhanced. For example, WiFi 6 based on IEEE 802.11ax

can provide a maximum bandwidth of 9.6 Gbps, and WiFi

7 based on IEEE 802.11be is expected to have a maximum

transmission bandwidth of at least 30 Gbps. However, it is

well studied that when transferring a large volume of traffic via

the legacy kernel TCP stack, the system kernel has to handle

operations such as context switching and memory copies,

which induce high CPU overhead on the hosts [2]. Based

on these observations, although wireless hosts are empowered

with ultra-high bandwidth from the hardware perspective, a

wide gap between the actual transmission capacity and the

target value might exist due to the host CPU bottleneck, which

restricts the performance of new technologies.

Ultra-low latency of wireless applications requires ultra-

high bandwidth. High-resolution and video-based interactive

applications such as wireless projection require ultra-low

This work is supported by Huawei, the China National Funds for Dis-
tinguished Young Scientists (61825204), the NSFC Projects (61932016
and 62132011), and the Beijing Outstanding Young Scientist Program
(BJJWZYJH01201910003011).

latency. For example, a live 4K video requires at least 30

frames per second, which means for each frame the handling

progress including encoding, transmitting, and decoding has

to be completed within 60 ms [3]. However, even without

considering transmission latency, the software-based codec

latency of a 4K video (180-250 ms) is far beyond what can

be tolerated [4]. Applying hardware-based codec can alleviate

the problem in a way; however, the flexibility of customization

makes the software-based way still widely used in commercial

products [5]. This reveals that the CPU-intensive codec is

becoming the bottleneck of high-resolution and interactive

applications in commercial devices. In this case, reducing the

overhead of codec (or even sending raw frames without codec)

but asking for more bandwidth, has the potential to achieve

lower end-to-end latency. In other words, ultra-high bandwidth

validates ultra-low latency.

In summary, the CPU bottleneck on hosts is becoming the

hurdle for wireless transmission to achieve ultra-low latency

and ultra-high bandwidth, and the usage of the legacy kernel

TCP stack is one reason. It is also well studied that RDMA

(Remote Direct Memory Access), a technique to access mem-

ory remotely and directly, can bypass the system kernel

and perform packet parsing in hardware without software

involvement. Specifically, RDMA reduces over 95% of the

CPU utilization on hosts [2]. Recently, almost all studies [2],

[6] related to RDMA are in the context of data center networks.

They have demonstrated that RDMA-based protocol stack

(e.g., RDMA over Converged Ethernet (RoCE) v2) achieves

lower latency and higher bandwidth compared to kernel TCP

stack. While RDMA-based applications are currently in the

wired domain. Considering the great potential of RDMA

in tackling the CPU bottleneck issue, enabling RDMA for

wireless transmission to achieve ultra-low latency and ultra-

high bandwidth would be a relevant contribution.

In this paper, we for the first time propose the concept of

Wireless-RDMA (W-RDMA). W-RDMA enables RDMA for

wireless transmission and tackles the CPU bottleneck issue

on wireless hosts. While W-RDMA shows great potential for

wireless transmission improvement, we expose several techni-

cal challenges that should be overcome for wide deployment in

practice. For example, (1) lossless transmission guarantee, (2)

interface adapter design, and (3) dedicated hardware support.

Then we design a testbed to demonstrate the feasibility of W-

RDMA and further discuss the gap between the testbed and

the full implementation of W-RDMA protocol stack.



Fig. 1. The architecture of W-RDMA

II. RELATED WORK

To resolve data forwarding bottlenecks, some software-

based kernel bypass solutions [7] such as Data Plane De-

velopment Kit (DPDK), provide a set of user-space libraries

and drivers that accelerate packet-processing workloads. These

methods reduce interruptions and memory copies, however, (1)

protocol stack is only moved to the user space which is still

CPU-consuming. (2) They waste CPU resources when hosts

are low-loaded.

TCP Offload Engine (TOE) extends the TCP/IP protocol

stack so that some function of the TCP/IP protocol is trans-

ferred from the CPU to the TOE hardware. The checksum

calculation of the IP header, TCP header, and UDP header is

calculated by the NIC instead of CPU, reducing the burden on

the CPU. However, (1) TOE only provides speedups under a

limited set of workload conditions [8]. (2) The context switch

and system calls of TOE still take considerable CPU overhead.

Nowadays, a number of RDMA-based transport layer de-

signs in data center have been proposed [2], [6]. These studies

start from the causes of congestion and address them by

some mechanisms such as receiver-side driving, selective ECN

marking, and dynamic RTT changes. However, for wireless

networks, existing commercial wireless routers do not support

ECN and bandwidth is prone to change, which are signifi-

cantly different from data center networks. Note that the non-

decompression method [9] can be applied to cooperate with

RDMA to further reduce CPU overhead on hosts, improving

performance and storage efficiency. However, this is out of the

scope of this paper.

To the best of our knowledge, this paper is the first work

that investigates the feasibility, challenges, and opportunities

when RDMA meets wireless, in order to fundamentally tackle

the CPU bottleneck issues in wireless networks.

III. W-RDMA OVERVIEW

RDMA is a technique to access memory remotely and

directly that bypasses the operating system and kernel and

performs packet parsing in hardware without host CPU in-

volvement. On this basis, W-RDMA is a scheme designed to

enable RDMA for wireless transmission.

A. The Architecture of W-RDMA

Figure 1 shows the module interactions of two protocols, i.e,

TCP/IP and W-RDMA, respectively over wireless links. For

W-RDMA Application

W-RDMA Interface Adapter

W-RDMA Kernel Mode

W-RDMA Transport Protocol

Host Channel 

Adapter

UDP/IP or Others

802.11 Link Layer

U
se

r 
S

p
ac

e
K

er
n
el

 S
p

ac
e

H
ar

d
w

ar
e 

S
p

ac
e

Rate Controller Loss Recovery

Fig. 2. The W-RDMA protocol stack

TCP/IP, data in the application buffer are sent through Socket

APIs, passed into the operating system for processing, and

then transmitted to the receiver through wireless MAC. For

W-RDMA, data at the application layer does not pass through

the operating system, but directly enters the cache of the W-

RDMA engine and is transmitted to the other receiving host

via UDP frames. At the receiver, the data packets likewise do

not pass through the operating system, but are directly handed

over to the W-RDMA engine for processing and passed to the

upper-layer application afterwards. In this architecture design

of W-RDMA, proprietary hardware is expected to support

RDMA, and W-RDMA oriented protocols and application

interfaces are also required, which we will discuss next.

B. The W-RDMA Protocol Stack

As illustrated in Figure 2, the W-RDMA protocol stack

obeys a hierarchical design, including hardware space, kernel

space, and user space.

Hardware space. Inspired by RoCEv2, the W-RDMA trans-

port protocol should be implemented in the hardware space.

Different from the RDMA protocol stack in the wired domain,

the link layer is based on IEEE 802.11 standards, including

802.11a/b/g/n, 802.11ac, 802.11ax, etc. In addition, the W-

RDMA transport protocol should include a Host Channel

Adapter. This is because that wireless channel is the medium

for wireless network to send and receive data, and running

on the right channel helps to speed up connection speed [10].

The number of channels varies for different frequency bands,

and adjacent channels are prone to interfere with each other.

Specifically, the Host Channel Adapter is to detect the channel

usage and select the channel that suffers the least interference

to ensure the advantage of high bandwidth of W-RDMA.

Besides, the W-RDMA transport layer can reuse UDP as the

transport-layer carrier but add the specific modules such Rate

Controller (similar to DCQCN for RDMA) and Loss Recovery

(e.g., Go-Back-N).

Kernel space. Unlike the kernel space of TCP/IP, W-RDMA’s

kernel space performs fewer operations including capturing

and forwarding packets, encapsulating data, and performing

task scheduling.

User space. The user space of W-RDMA requires a carefully

designed W-RDMA Interface Adapter between the application

layer and kernel space. Generally, W-RDMA Interface Adapter



should at least include a framework of unified north APIs

and wireless channel selection APIs. The unified north APIs

provide original interfaces for data transmission, such as

SEND, RECEIVE, WRITE, READ, etc. The wireless channel

selection APIs provide a way for applications to customize

the policy of channel selection. The design of these APIs is

not straightforward but requires overcoming some challenges

as discussed in the next section.

C. Challenges for Applying W-RDMA

While W-RDMA shows great potential for wireless trans-

mission improvement, according to the above-discussed design

of W-RDMA, we list several technical challenges that should

be overcome for wide deployment in practice.

Lossless transmission guarantee. It is well-known that en-

suring lossless transmission is a prerequisite to guarantee the

performance benefits of RoCEv2. This is because RDMA

adopts the Go-Back-N retransmission mechanism, which seri-

ously loses performance when the loss occurs. Due to poor

wireless signal strength caused by natural or human-made

interference and limited software and hardware resources in

mobile terminals, wireless transmission suffers from more

unpredictable network conditions than wired one. Hence, it is

more challenging for the W-RDMA based transmission control

to guarantee lossless transmission. On the one hand, W-RDMA

should avoid packet loss as much as possible. On the other

hand, W-RDMA should recover as quickly as possible in the

case of packet loss without inducing much overhead.

Interface adapter design. As mentioned above, the W-RDMA

Interface Adapter may include unified north APIs and wireless

channel selection APIs. For the unified north APIs, W-RDMA

should basically reuse as many as possible the functions

of legacy RDMA verbs APIs, including SEND, RECEIVE,

WRITE, READ, etc. However, (1) different from the service-

oriented data center networks, W-RDMA might be commonly

used in application-oriented wireless networks. Besides, (2)

the RDMA verbs APIs are relatively complicated for some

applications of other platforms such as ARM-based Android.

Based on these observations, novel and relatively simple, a

set of unified north APIs is required for W-RDMA to support

both zero-copy and hardware offloading for high-performance

transmission. For wireless channel selection APIs, they are

designed to interact with the Host Channel Adapter at the hard-

ware layer. This enables a cross-layer application-customizable

wireless channel adaption.

Dedicated hardware support. Kernel bypass capability of

RDMA hosts is mainly supported by dedicated hardware, i.e.,

NICs. Although nowadays the Wi-Fi 6 and 5G communication

modules have been widely equipped, no dedicated W-RDMA

enabled chips exist for mobile terminals such as smartphones.

It is therefore a great challenge for the W-RDMA deployment

with the absence of dedicated smart NICs for W-RDMA.

IV. A TESTBED OF W-RDMA

The topology of the W-RDMA testbed is illustrated in

Figure 3. Two hosts are equipped with RDMA-enabled smart

Fig. 3. Testbed topology

2 8 32
128

512
2048

8192

32768

131072

524288

packet size (bytes)

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

RDMA

TCP

W-RDMA

Fig. 4. Throughput trend with packet size

NICs with a high bandwidth capability of 10 Gbps, and each

host is connected to a 10-GbE router through a wired link

to form a logic wireless terminal, and the communication

between the two logic wireless terminal is still over Wi-Fi

links (e.g., Wireless Distribution System (WDS)).

Packet loss significantly impacts performance of RDMA-

based protocol stack. In order to control the sending rate of

RDMA hosts, as shown in Figure 3, the W-RDMA testbed

requires a Rate Controller implemented between the host and

the router. Specifically, the Rate Controller first sets up a rate

adapter to fit the rate to wireless link capacity, then adopts

a PFC controller as the last resort mechanism to guarantee

lossless transmission. In addition, a forwarding module needs

to be added for L2 layer data forwarding.

Discussion: There are some notable points that are important

for reasoning why this testbed can evaluate of the feasibility

of W-RDMA. We briefly describe these points below.

First, the proto verbs operations of RDMA are still used

without unified north APIs in this testbed. Since it does not

affect the performance of W-RDMA wireless transmission, the

evaluation of feasibility for W-RDMA remains constant.

In addition, to ensure lossless transmission, we control

the sending speed of the host by adding a rate controller

between it and the router. Although it does not provide a

perfect set of congestion control protocols, it proves the

feasibility of W-RDMA to be utilized by wireless applications

through adequate experiments. In the future, a complete set

of congestion algorithms should be designed to better ensure

that W-RDMA does not lose packets and recovers quickly after

packet loss in a wireless environment.

V. TESTBED EVALUATION

In this section, we evaluate the performance of W-RDMA.

As shown in Figure 3, two hosts (DELL PowerEdge R610)

are equipped with RDMA smart NIC supporting RoCE v2

protocol. The rate controller is a common server with two

82599ES NICs, which serve as both incoming and outgoing



client server
0.0

2.5

5.0

7.5

10.0

12.5

C
P
U

 U
ti

li
z
a
ti

o
n
 (

%
)

8.10

13.70

2.70 2.68

TCP

W-RDMA

Fig. 5. CPU utilization

ports for route forwarding. Both routers are WiFi 6 wireless

routers (ASUS RT-AX89X).

Throughput. We first explore the throughput trend of W-

RDMA when packet size varies. Specifically, W-RDMA tests

are performed by the ib send bw proto operation, compared

with TCP’s iperf 3 with the packet size in the range of [2,

1048576] bytes. We also run tests using the legacy RDMA

without the extra Rate Controller introduced in Section IV.

Figure 4 shows the results. Generally, throughput increases

with the increase of packet size. This is because the on-

off flow pattern cannot fully utilize bandwidth when packet

size is small. When packet size is large enough (e.g., over

32768 bytes), RDMA’s sending rate exceeds the wireless

bandwidth, which induces packet losses and retransmissions.

This seriously affects the performance of RDMA. W-RDMA

outperforms RDMA because an extra Rate Controller is in-

troduced to avoid losses. Figure 4 also demonstrates that W-

RDMA approximates TCP in throughput when transmitting

large-size packets. Note that the maximum throughput of both

TCP and W-RDMA are below 2 Gbps; this is due to the

bandwidth limitation of the WDS link between two wireless

routers. However, this is out of the scope of this paper.

CPU utilization. We then compare the CPU utilization of

kernel TCP and W-RDMA with the same packet size. In

particular, we set packet size as 30000 bytes to ensure that

they achieve a similar throughput (i.e., TCP is 1704 Mbps

and W-RDMA is 1693.92 Mbps). Figure 5 shows the results.

It is obvious that W-RDMA is able to significantly reduce CPU

overhead on hosts. Specifically, W-RDMA saves 66.67% and

80.44% of CPU resources on the client host and the server

host, respectively. This validates W-RDMA in a way.

VI. FUTURE OPPORTUNITIES

This work is the first transition of RDMA from wired

domain to wireless domain. We have tried to verify the

feasibility of W-RDMA via testbed experiments. In addition

to the challenges discussed in Section III-C, the proposed W-

RDMA further provides new possibilities and opportunities for

the future development of RDMA over wireless.

Minimalist device-to-device transport protocols. The IP

layer in the W-RDMA hardware space (see Figure 2) is not as

mandatory as in the wired domain. This is because the local

wireless networks are relatively confined, and can forward

packets according to the MAC address space. In this case,

the IP-based UDP may be replaced by a minimalist device-

to-device transport protocol that abandons the IP layer. This

further enhances the high performance of W-RDMA.

Cross-layer optimizations. W-RDMA still follows the IEEE

802.11-based standard in the link layer, but it should apply a

cross-layer design on transmission control. Specifically, upon

receiving the MAC data frames, the NIC does not send back

the MAC-layer block-ACKs immediately. Instead, it processes

the data frames and generates flow control information. This

information carried by MAC-layer block-ACKs is then fed

back to the W-RDMA transport layer. If no ACK event is

received within a certain period of time, W-RDMA might

retransmit the packet and adjusts sending rate accordingly [11].

VII. CONCLUSION

This paper proposes W-RDMA and investigates its feasibil-

ity of enabling RDMA in wireless transmission. W-RDMA

differs from legacy RDMA in the following aspects. (1)

The link layer of W-RDMA is based on the IEEE 802.11

standards. (2) W-RDMA transport protocol should include a

Host Channel Adapter for better channel management. (3)

It is more challenging for W-RDMA to avoid packet loss

and to recover losses efficiently. (4) A set of simpler user

APIs is required for W-RDMA to support both zero-copy

and hardware offloading for high-performance transmission.

(5) Dedicated W-RDMA enabled smart NICs. The future

work includes overcoming the above mentioned challenges

as well as the design of minimalist device-to-device transport

protocols, and cross-layer optimizations.

VIII. ACKNOWLEDGMENT

This work was partly done when Tong Li was a full-time

Chief Engineer at Huawei. We thank Kun Tan, Binzhang Fu,

Jie Li, Yalei Wang, and Bojie Li for feedback throughout this

project. Hanlin Huang is the corresponding author.

REFERENCES

[1] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in ACM SIGCOMM, 2020.

[2] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM CCR, 2015.

[3] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is fast
enough? user perception of latency & latency improvements in direct
and indirect touch,” in ACM CHI, 2015.

[4] D. Xu, A. Zhou, X. Zhang, and et al., “Understanding operational 5g:
A first measurement study on its coverage, performance and energy
consumption,” in ACM SIGCOMM, 2020.

[5] Agora, “Agora sdk,” https://www.agora.io/en, 2021.
[6] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,

A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM CCR, 2015.

[7] Intel, “Dpdk,” https://www.dpdk.org/, 2021.
[8] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt, “Integrated network

interfaces for high-bandwidth tcp/ip,” in ACM ASPLOS, 2006.
[9] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: a high-

performance framework for enabling near orthogonal processing on
compression,” IEEE TPDS, 2022.

[10] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and
K. Tan, “Revisiting acknowledgment mechanism for transport control:
Modeling, analysis, and implementation,” IEEE/ACM TON, 2021.

[11] T. Li, K. Zheng, and K. Xu, “Acknowledgment on demand for transport
control,” IEEE Internet Computing, 2021.


